Crystal and Molecular Structure of a Silver Salt of Antibiotic A-130A

By Hirozo Koyama* and Kazuko Utsumi-Oda, Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushimaku, Osaka 553, Japan

The crystal structure of the title compound has been determined by three-dimensional X-ray analysis from diffractometer data. Crystals are orthorhombic, space group $P2_12_12_1$, a = 28.179(5), b = 9.582(2), c = 18.096(3), Z = 4. The structure was solved by direct methods and refined by full-matrix least-squares calculations to R 0.065 for 3 977 independent observed reflexions. Hydrogen atoms were located. The absolute configuration was determined by the anomalous dispersion method. The molecule is wrapped around the Ag+ cation, and held in this configuration by two very strong hydrogen bonds between the carboxylate oxygen atoms and the two alcohol groups of the terminal six-membered ring.

The antibiotic A-130A, $C_{47}H_{78}O_{13}$, was isolated ¹ as the sodium salt from a culture of Streptomyces hygroscopicus strain A-130A and has an antimicrobial activity in vitro against gram-positive bacteria and mycobacteria. From its biological activity and physicochemical properties, the antibiotic A-130A was thought to belong to the family of polyether monocarboxylic acid antibiotics. The structures of several polyether antibiotics have recently been established 2-24 by X-ray diffraction methods. In

¹ T. Kubota (the late), H. Hinoh, M. Mayama, K. Motokawa, and Y. Yasuda, J. Antibiotics, 1975, 28, 931.

- ² A. Agtarap, J. W. Chamberlin, M. Pinkerton, and L. K. Steinrauf, J. Amer. Chem. Soc., 1967, **89**, 5737. ³ L. K. Steinrauf, M. Pinkerton, and J. W. Chamberlin, Biochem. Biophys. Res. Comm., 1968, **33**, 29.
- ⁴ T. Kubota, S. Matsutani, M. Shiro, and H. Koyama, Chem. Comm., 1968, 1541.
- ⁵ M. Pinkerton and L. K. Steinrauf, J. Mol. Biol., 1970, 49, 533.
- ⁶ M. Shiro and H. Koyama, J. Chem. Soc. (B), 1970, 243. ⁷ S. M. Johnson, J. Herrin, S. J. Liu, and I. C. Paul, Chem.
- Comm., 1970, 72.
- ⁸ M. Alléaume and D. Hickel, Chem. Comm., 1970, 1422.
 ⁹ W. K. Lutz, F. K. Winkler, and J. D. Dunitz, Helv. Chim. Acta, 1971, 54, 1103.

- C. A. Maier and I. C. Paul, Chem. Comm., 1971, 181.
 J. F. Blount and J. W. Westley, Chem. Comm., 1971, 927.
 E. W. Czerwinski and L. K. Steinrauf, Biochem. Biophys. Res. Comm., 1971, **45**, 1284. ¹³ M. Alléaume and D. Hickel, J.C.S. Chem. Comm., 1972, 175.

the earlier reports,^{21, 25} the structure of antibiotic A-130A was suggested to be (I), from an X-ray crystallographic analysis of the silver salt. The structure of this compound was found to be very similar to that of dianemycin¹² and identical to that of RO 21-6150.²¹ The present X-ray crystal structure analysis was undertaken in order to obtain more detailed information of the molecular conformation.

- ¹⁴ E. C. Bissell and I. C. Paul, J.C.S. Chem. Comm., 1972, 967.
- N. D. Jones, M. O. Chaney, J. W. Chamberlin, R. L. Hamill, and S. Chen, J. Amer. Chem. Soc., 1973, 95, 3399.
 H. Kinashi, N. Ötake, H. Yonehara, S. Sato, and Y. Saito,
- Tetrahedron Letters, 1973, 4955. ¹⁷ T. J. Petcher and H. P. Weber, J.C.S. Chem. Comm., 1974,
- 697.
- ¹⁸ N. Ōtake, M. Koenuma, H. Kinashi, S. Sato, and Y. Saito, J.C.S. Chem. Comm., 1975, 92. ¹⁹ M. Alléaume, B. Busetta, C. Farges, P. Gachon, A. Kergo-
- mard, and T. Staron, J.C.S. Chem. Comm., 1975, 411. ²⁰ J. F. Blount and J. W. Westley, J.C.S. Chem. Comm., 1975,
- 533.
- ²¹ J. F. Blount, R. H. Evans, jun., C. M. Liu, T. Hermann, and J. W. Westley, J.C.S. Chem. Comm., 1975, 853.
 ²² C. Riche and C. Pascard-Billy, J.C.S. Chem. Comm., 1975,
- 951.
- 23 H. Kinashi, N. Ötake, H. Yonehara, S. Sato, and Y. Saito,
- ⁴⁴ M. Koenuma, H. Kinashi, N. Ötake, S. Sato, and Y. Saito, Acta Cryst., 1975, B31, 2411.
 ²⁴ M. Koenuma, H. Kinashi, N. Ötake, S. Sato, and Y. Saito, Acta Cryst., 1976, B32, 1267.
 ²⁵ H. Koyama and K. Okada, 10th Internat. Congr. Crystallo-
- graphy, Amsterdam, 1975, Abstract S18.

EXPERIMENTAL

OMe

Me

Crystals of (I) were isolated according to the method of ref. 26 and recrystallized from ethyl alcohol as colourless prisms, m.p. 157-160 °C, elongated along the b axis.

senberg and precession photographs by use of $Cu-K_{\alpha}$ ($\lambda =$ 1.541 8 Å) radiation, and accurate unit-cell dimensions were obtained by least-squares refinement of the setting angles of 20 reflexions measured on an automatic diffractometer.

Crystal Data.— $C_{47}H_{77}AgO_{13}$, M = 958.0. Orthorhombic, a = 28.179(5), b = 9.582(2), c = 18.096(3) Å, U = 4.886ų, $D_{
m m}=$ 1.305 (by flotation), Z= 4, $D_{
m c}=$ 1.302, F(000)=2 036. Space group $P2_12_12_1$ (D_2^4 , No. 19), from systematic absences: h00 for h odd, 0k0 for k odd, and 00l for l odd. Mo- K_{α} radiation, $\lambda = 0.710$ 7 Å; μ (Mo- K_{α}) = 4.668 cm⁻¹.

Three-dimensional intensity data were collected on a Hilger and Watts automatic four-circle Y 290 diffractometer controlled by a PDP 8 computer. Integrated intensities were measured for $\theta < 27.5^\circ$ by the $\theta{-\!\!-\!}2\theta$ scan technique with Mo- K_{α} radiation and a scintillation counter (with zirconium filter and pulse-height analyser). Each reflexion was integrated in 80 steps of 0.01° . A standard reflexion was monitored every 10 reflexions. Scan counts (P) and background counts (B_1, B_2) were combined to yield the integrated intensities $I = P - 2(B_1 + B_2)$.

A total of 6 253 independent reflexions was measured, of which 3 977 having $I > 3\sigma(I)$ were considered observed. All intensities were corrected for Lorentz and polarization factors, and structure amplitudes were derived. No absorption corrections were applied since the specimen was considered to be sufficiently small ($0.28 \times 0.36 \times 0.31$ mm).

Structure Analysis .- The structure was solved by the SEARCHER programme for automatic heavy-atom analysis, written 27, 28 for the CDC 3600 computer (later modified for CDC 6600 computer). Initial co-ordinates for the silver atom were easily derived from a three-dimensional Patterson synthesis. The atomic co-ordinates of 60 light atoms, which were treated as carbon atoms, were found from the first cycle (CDC 6600 computer), and the co-ordinates of these 61 atoms refined ²⁹ by full-matrix least-squares calculations. After three cycles of isotropic and a further three cycles of anisotropic least-squares refinement, R decreased to 0.089 for observed reflexions. A three-dimensional difference-Fourier synthesis was then calculated and the positions of the 77 hydrogen atoms were found. The final five cycles of full-matrix least-squares refinement were carried out with anisotropic temperature factors, the function minimized being $\Sigma w(F_0 - F_c)^2$ with unit weights; hydrogen atoms were

²⁶ T. Kubota (the late), ref. 1.
²⁷ H. Koyama and K. Okada, 1970, SEARCHER, a Fortran program for the automatic heavy-atom analysis of organic compounds, Shionogi Research Laboratory, Osaka, Japan.
²⁸ H. Koyama and K. Okada, *Acta Cryst.*, 1970, **B26**, 444.

included in the structure-factor calculations with isotropic temperature factors (B fixed at 2.425 Å²). In the final calculations the hydrogen co-ordinates were also permitted

TABLE 1

Final fractional atomic co-ordinates ($\times 10^4$), with estimated standard deviations in parentheses

Atom	x	ν	7
Ag+	3 993(0)	8 838(1)	5 242(0)
Cĩ	2449(3)	9866(13)	6 070(5)
Č(2)	1897(3)	9 709(13)	6045(5)
C(3)	1681(3)	$10\ 271(13)$	5322(6)
C(4)	1711(3)	$11\ 805(14)$	5 217(6)
C(5)	$1\ 602(4)$	12 201(16)	4 432(6)
C(6)	1973(4)	12 304(14)	3 848(5)
C(7)	2 406(3)	11 838(14)	3 973(5)
C(8)	2833(4)	11 834(13)	$3\ 447(5)$
C(9)	3138(3)	$10\ 553(12)$	3 573(5)
C(10)	2 876(3)	9 186(13)	3 474(5)
C(11)	3 197(3)	7 960(10)	3 521(5)
C(12)	3 621(3)	8 100(13)	Z 998(4)
C(13)	0 004(0) 1 911(9)	9 020(10)	0 097(0) 9 527(5)
C(14)	4 522(3)	11 013(16)	2 945(6)
C(16)	4 487(3)	10.595(12)	3759(5)
Č(17)	4926(3)	9835(12)	4052(5)
C(18)	5111(3)	8 627(17)	3 607(6)
C(19)	5 488(4)	7 804(16)	3 980(6)
C(20)	5 318(4)	7 342(12)	4 736(7)
C(21)	5 156(3)	8 584(12)	5 185(5)
C(22)	5 538(3)	9.635(12)	5 478(6)
C(23)	$5\ 283(3)$	$10\ 233(12)$	6 147(6)
C(24)	$5\ 012(3)$	$9\ 050(11)$	6 452(5)
C(25)	4 572(3)	9 352(10)	6 879(5)
C(26)	4 660(3)	10.050(12) 10.467(12)	7 018(0)
C(27)	4 179(0) 2 979/2	10 407(13)	7 907(0)
C(20)	3 823/3)	10.579(10)	6 692(4)
C(20) C(30)	1780(4)	8 298(17)	6 169(8)
Č(31)	$1\ 374(5)$	12661(16)	5727(7)
C(32)	1816(4)	12884(16)	3114(6)
C(33)	$3\ 109(4)$	$13\ 165(14)$	3 518(6)
C(34)	3 250(3)	6 600(12)	4 621(5)
C(35)	$2\ 716(3)$	6 596(13)	4 841(6)
C(36)	2624(4)	$5\ 422(13)$	5 370(6)
C(37)	2 926(4)	5 486(12)	6 024(6)
C(38)	3 440(3)	5 540(11) 5 788(16)	0 708(0) 6 979(6)
C(39)	3 191(4) 9 477(5)	0 700(10) A 208(16)	6 8 8 4 (0)
C(40) C(41)	3 932(5)	6.887(14)	3014(6)
C(42)	4 368(4)	11836(13)	4224(7)
C(43)	4 936(4)	6275(14)	4 699(7)
C(44)	6 011(4)	8 984(14)	5 707(6)
C(45)	4 939(4)	9 171 (14)	8 142(6)
C(46)	$3 \ 397(4)$	$11\ 549(19)$	7 781(7)
C(47)	3618(3)	$11\ 532(12)$	$6\ 111(6)$
O(48)	2 638(2)	9 709(12)	6 665(4)
O(49)	2 649(2)	10 067(11)	5481(3)
O(50)	1 194(3) 3 593(9)	12 402(13)	4 208(4)
O(51)	4 102(2)	9 580(8)	3782(3)
O(53)	4 800(1)	9 380(7)	4771(3)
O(54)	4912(2)	8 141(7)	5 826(3)
O(55)	4 286(2)	10 215(7)	6 417(3)
O(56)	3 577(2)	9 341 (8)	6 748(4)
O(57)	3 531(2)	10878(8)	5 436(3)
O(58)	$3\ 381(2)$	7 806(7)	4 254(3)
U(59)	3 519(2)	6 681(7) 4 209(10)	5 280(3) 6 400(4)
U(00)	Z 891(3)	4 328(IV)	0 499(4)

to vary (a shift factor of 0.35 was applied), and at this stage R was 0.065 for the 3 977 reflexions.

Observed and calculated structure amplitudes and anisotropic temperature factors are listed in Supplementary

29 W. L. Busing, K. O. Martin, and H. A. Levy, ORFLS, A Fortran crystallographic least-squares program, Oak Ridge National Laboratory, Tennessee, Report ORNL TM 305, 1962. publication No. SUP 21976 (13 pp., 1 microfiche).* Atomic scattering factors used in all calculations were taken from ref. 30 for non-hydrogen and from ref. 31 for hydrogen

TABLE 2

Final	fract	ional	hydrogen	atomic co-ord	inate	es ($\times 10$	D ³)
Atom	x	у	z	Atom	x	у	z
H(2)	177	1 0 3 4	646	H(33a)	328	1 301	313
H(3a)	181	980	496	H(33b)	290	$1 \ 409$	344
H(3b)	128	1 0 0 4	538	H(33c)	316	$1 \ 338$	398
H(4)	192	1 211	533	H(34)	339	575	435
H(7)	243	1 1 4 0	437	H(35a)	262	756	503
H(8)	274	1 169	308	H(35b)	261	627	453
H(9)	327	$1 \ 052$	399	H(36a)	274	454	517
H(10a)	279	936	299	H(36b)	242	504	520
H(10b)	264	936	374	H(37)	285	636	620
H(11)	308	706	344	H(38)	350	467	557
H(12)	353	812	269	H(39a)	384	511	662
H(14a)	440	899	241	H(39b)	367	659	666
H(14b)	411	1 014	225	H(39c)	414	586	623
H(15a)	472	1 100	279	H(40a)	224	384	671
H(15b)	436	1 1 7 6	281	H(40b)	246	358	711
H(17)	508	$1 \ 055$	406	H(40c)	242	506	697
H(18a)	522	916	328	H(41a)	402	682	345
H(18b)	484	824	349	H(41b)	381	588	292
H(19a)	556	866	409	H(41c)	412	703	275
H(19b)	565	719	372	H(42a)	412	$1\ 226$	406
H(20)	550	677	497	H(42b)	458	$1\ 253$	415
H(22)	563	$1 \ 032$	523	H(42c)	441	1 146	457
H(23a)	506	1 0 9 7	613	H(43a)	487	551	490
H(23b)	539	1.087	631	H(43b)	470	679	456
H(24)	521	861	673	H(43c)	496	573	434
H(25)	444	859	692	H(44a)	591	803	589
H(26)	482	1 096	754	H(44b)	616	985	588
H(27a)	409	958	798	H(44c)	609	851	54(
H(27b)	423	1073	839	H(45a)	494	979	855
H(28)	397	1 211	731	H(45b)	483	838	829
H(30a)	187	776	571	H(45c)	521	919	804
H(30b)	191	784	639	H(46a)	321	$1\ 202$	764
H(30c)	156	815	608	H(46b)	346	$1\ 193$	82
H(31a)	145	$1\ 252$	622	H(46c)	336	1 050	798
H(31b)	141	$1 \ 350$	577	H(47a)	388	$1\ 235$	600
H(31c)	121	1 196	565	H(47b)	338	$1\ 213$	620
H(32a)	159	$1\ 227$	278	H(56)	337	928	670
H(32b)	168	$1\ 377$	325	H(57)	333	$1 \ 048$	54
H(32c)	199	1 261	286	. ,			

TABLE 3

Determination of the absolute configuration

h	k	l	$F_{e}(hkl)$	$F_{c}(h\bar{k}l)$	$I(hkl) \geq I(h\bar{k}l)$
1	1	5	54.3	24.1	<
2	1	2	165.2	169.1	>
4	1	2	77.5	55.5	<
4	1	3	38.4	59.0	>
4	1	4	43.2	36.5	<
4	1	9	35.8	32.5	<
6	1	1	78.7	46.7	<
6	1	7	39.9	49.4	>
6	1	8	46.0	58.5	>
9	1	11	31.6	34.2	>
10	1	5	54.4	34.5	<
10	1	8	12.2	29.5	>
11	1	5	27.7	52.4	>
12	1	7	39.1	37.8	<
14	1	9	16.2	24.0	>

atoms. Final positional parameters, with their estimated standard deviations, are given in Tables 1 and 2.

* See Notice to Authors No. 7 in J.C.S. Perkin II, 1975, Index issue.

³¹ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.

J. M. Bijvoet, A. F. Peerdeman, and A. J. van Bommel, Nature, 1951, 168, 271.

Absolute Configuration.-In the final stage of the analysis the absolute configuration of the molecule was determined by the anomalous dispersion method.³² The differences between $I_0(hkl)$ and $I_0(hkl)$ were measured visually from the photographs rotated around the b axis, taken with $Cr-K_{\alpha}$ radiation ($\lambda = 2.290$ 9 Å). Structure factors were calculated for all hkl and $h\bar{k}l$ reflexions, with a scattering factor ³³ for the silver atom of the form: $f_{Ag} = f_{Ag} + \Delta f'_{Ag} + i\Delta f''_{Ag}$, with $\Delta f'_{Ag} - 0.924$ and $\Delta f''_{Ag} 8.235$. The results (see Table 3) unanimously indicated that the parameters of Tables 1 and 2 represent the left-hand co-ordinate system.

DISCUSSION

The configuration of the molecule is illustrated ³⁴ in Figure 1. The molecule is a new member of the polyether antibiotics containing four six-membered (A, C, E, and F) and two five-membered rings (B and D). The junctions B/C and D/E are of spiro-conformation, *i.e.* in each case the two rings have only one atom in common. The molecule are very similar in structure and stereochemistry to dianemycin,¹² except for the differences at atoms C(10)--(12), C(19), and C(34).

Intramolecular bond distances and angles are given in Table 4, together with their estimated standard deviations computed from the least-squares residuals. Mean estimated standard deviations are ca. 0.014 Å and 0.8°. The observed C-C distances lie in the range 1.409-1.567 Å (mean 1.509 Å), and C-O distances in the range 1.360-1.464 Å (mean 1.422 Å). Most observed bond distances and angles are comparable to those found in

FIGURE 1 An ORTEP drawing of the molecule, showing the atom numbering system used

other polyether antibiotics including monesin,^{5,9} polyetherin A (nigericin),⁶ salinomycin,²³ and lysocellin.²⁴ The C(2)-C(30) bond (1.409 Å) is considerably shorter than the normal single-bond distance. Two or three differences which appear to be significant in terms of the estimated standard deviations are more likely to indicate

³³ 'International Tables for X-Ray Crystallography,' vol. 4,

Kynoch Press, Birmingham, 1974, pp. 149. ³⁴ C. K. Johnson, ORTEP, A Fortran thermal-ellipsoid plot program, Oak Ridge, National Laboratory, Tennessee, Report ORNL 3794, 1965.

³⁰ P. A. Doyle and P. S. Turner, Acta Cryst., 1968, A24, 390.

J.C.S. Perkin II

TABLE 4

Interatomic distances (Å) and angles (°), with standard deviations in parentheses

(a) Bond distant	ces		
$\begin{array}{ccccc} C(1)-C(2) & 1.\\ C(1)-O(48) & 1.\\ C(1)-O(49) & 1.\\ C(2)-C(3) & 1.\\ C(2)-C(3) & 1.\\ C(3)-C(4) & 1.\\ C(4)-C(5) & 1.\\ C(4)-C(5) & 1.\\ C(5)-C(6) & 1.\\ C(5)-C(6) & 1.\\ C(5)-O(50) & 1.\\ C(6)-C(7) & 1.\\ C(6)-C(7) & 1.\\ C(6)-C(32) & 1.\\ C(7)-C(8) & 1.\\ C(7)-C(8) & 1.\\ C(8)-C(9) & 1.\\ C(8)-C(9) & 1.\\ C(9)-C(10) & 1.\\ C(9)-C(10) & 1.\\ C(9)-C(10) & 1.\\ C(10)-C(11) & 1.\\ C(11)-C(12) & 1.\\ C(11)-C(12) & 1.\\ C(12)-C(13) & 1.\\ C(13)-O(51) & 1.\\ C(13)-O(52) & 1.\\ C(13)-O(52) & 1.\\ C(16)-C(17) & 1.\\ C(16)-C(17) & 1.\\ C(16)-C(16) & 1.\\ C(16)-C(17) & 1.\\ C(16)-C(16) & 1.\\ C(16)-C(12) & 1.\\ C(17)-C(18) & 1.\\ C(17)-C(18) & 1.\\ C(17)-C(53) & 1.\\ C(18)-C(19) & 1.\\ \end{array}$	$\begin{array}{c} 561 \ (13) \\ 212 \ (12) \\ 221 \ (12) \\ 540 \ (15) \\ 409 \ (20) \\ 484 \ (18) \\ 5503 \ (16) \\ 557 \ (18) \\ 489 \ (16) \\ 216 \ (15) \\ 317 \ (16) \\ 557 \ (18) \\ 489 \ (16) \\ 216 \ (15) \\ 317 \ (16) \\ 5507 \ (18) \\ 5514 \ (16) \\ 5530 \ (15) \\ 5536 \ (13) \\ 432 \ (11) \\ 485 \ (15) \\ 5536 \ (13) \\ 432 \ (11) \\ 485 \ (15) \\ 5536 \ (13) \\ 432 \ (11) \\ 471 \ (17) \\ 557 \ (18) \\ 5538 \ (14) \\ 409 \ (13) \\ 423 \ (11) \\ 507 \ (18) \\ 5530 \ (15) \\ 5529 \ (15) \\ 5529 \ (15) \\ 5529 \ (15) \\ 5529 \ (15) \\ 495 \ (17) \\ 460 \ (12) \\ 502 \ (18) \\ 417 \ (12) \\ 484 \ (18) \end{array}$	$\begin{array}{c} C(19) - C(20)\\ C(20) - C(21)\\ C(20) - C(21)\\ C(20) - C(22)\\ C(21) - O(53)\\ C(21) - O(53)\\ C(22) - C(23)\\ C(22) - C(24)\\ C(22) - C(24)\\ C(23) - C(24)\\ C(25) - O(55)\\ C(25) - O(55)\\ C(26) - C(26)\\ C(25) - O(55)\\ C(26) - C(27)\\ C(26) - C(45)\\ C(27) - C(28)\\ C(28) - C(29)\\ C(28) - C(46)\\ C(29) - O(55)\\ C(29) - O(55)\\ C(34) - O(58)\\ C(34) - O(58)\\ C(34) - O(58)\\ C(35) - C(36)\\ C(35) - C(38)\\ C(36) - C(37)\\ C(37) - C(38)\\ C(38) - O(59)\\ C(38) - O(59)\\ C(40) - O(60)\\ C(47) - O(57)\\ \end{array}$	$\begin{array}{c} 1.516 \ (18) \\ 1.511 \ (16) \\ 1.485 \ (18) \\ 1.567 \ (14) \\ 1.464 \ (12) \\ 1.414 \ (12) \\ 1.527 \ (15) \\ 1.527 \ (15) \\ 1.473 \ (15) \\ 1.473 \ (15) \\ 1.490 \ (13) \\ 1.455 \ (12) \\ 1.515 \ (14) \\ 1.455 \ (12) \\ 1.515 \ (14) \\ 1.425 \ (11) \\ 1.520 \ (14) \\ 1.494 \ (15) \\ 1.557 \ (15) \\ 1.557 \ (15) \\ 1.557 \ (15) \\ 1.557 \ (15) \\ 1.382 \ (13) \\ 1.424 \ (12) \\ 1.499 \ (17) \\ 1.458 \ (16) \\ 1.577 \ (16) \\ 1.499 \ (17) \\ 1.489 \ (16) \\ 1.497 \ (15) \\ 1.489 \ (16) \\ 1.413 \ (12) \\ 1.360 \ (18) \\ 1.394 \ (13) \\ \end{array}$
O(4 O(4		$\begin{array}{c} O(56) & 2.673 \ (9) \\ O(57) & 2.604 \ (9) \end{array}$	
(b) Valency angl C(2)-C(1)-O(48) C(2)-C(1)-O(49) O(48)-C(1)-O(49) C(1)-C(2)-C(3) C(1)-C(2)-C(30) C(3)-C(2)-C(30) C(3)-C(4)-C(5) C(3)-C(4)-C(5) C(3)-C(4)-C(31) C(5)-C(4)-C(31) C(5)-C(6)-C(7) C(5)-C(6)-C(7) C(5)-C(6)-C(7) C(5)-C(6)-C(32) C(7)-C(6)-C(32) C(7)-C(8)-C(9) C(7)-C(8)-C(9) C(7)-C(8)-C(9) C(7)-C(8)-C(9) C(7)-C(8)-C(9) C(7)-C(8)-C(9) C(7)-C(8)-C(9) C(7)-C(8)-C(9) C(7)-C(8)-C(10) C(8)-C(9)-O(51) C(10)-C(11)-O(58) C(12)-C(11)-O(58) C(12)-C(11)-O(58) C(12)-C(13)-C(14) C(12)-C(13)-O(52) C(14)-C(13)-C(15)-C(16)	les 116.9(8) 116.7(8) 126.2(9) 112.6(8) 108.6(9) 112.2(10) 115.5(9) 111.0(10) 114.2(9) 107.6(10) 122.8(9) 119.3(10) 117.7(10) 120.3(10) 116.3(10) 123.2(10) 123	$\begin{array}{c} C(21)-C(20)-C(43)\\ C(20)-C(21)-C(22)\\ C(20)-C(21)-O(53)\\ C(20)-C(21)-O(53)\\ C(22)-C(21)-O(54)\\ O(53)-C(21)-O(54)\\ C(21)-C(22)-C(23)\\ C(21)-C(22)-C(23)\\ C(21)-C(22)-C(24)\\ C(23)-C(24)-C(24)\\ C(23)-C(24)-C(25)\\ C(23)-C(24)-O(54)\\ C(25)-C(24)-O(54)\\ C(25)-C(24)-O(55)\\ C(25)-C(24)-O(55)\\ C(25)-C(24)-O(55)\\ C(25)-C(26)-C(25)\\ C(25)-C(26)-C(25)\\ C(25)-C(26)-C(27)\\ C(25)-C(26)-C(27)\\ C(25)-C(26)-C(27)\\ C(25)-C(26)-C(27)\\ C(25)-C(26)-C(27)\\ C(25)-C(26)-C(27)\\ C(25)-C(26)-C(27)\\ C(26)-C(27)-C(28)\\ C(27)-C(28)-C(29)\\ C(27)-C(28)-C(29)\\ C(27)-C(28)-C(29)\\ C(27)-C(28)-C(29)-O(55)\\ C(28)-C(29)-O(55)\\ C(28)-C(29)-O(55)\\ C(47)-C(29)-O(55)\\ C(47)-C(29)-O(55)\\ C(35)-C(34)-O(59)\\ C(35)-C(34)-O(59)\\ C(35)-C(34)-O(59)\\ C(35)-C(37)-C(38)\\ C(35)-C(37)-O(60)\\ C(38)-C(37)-O(60)\\ $	$\begin{array}{c} 110.3(9)\\ 118.6(8)\\ 110.0(8)\\ 110.6(9)\\ 107.9(8)\\ 104.4(8)\\ 104.0(6)\\ 100.7(7)\\ 115.3(9)\\ 110.5(9)\\ 104.6(9)\\ 118.4(9)\\ 105.6(8)\\ 110.9(7)\\ 114.0(8)\\ 106.1(7)\\ 110.7(8)\\ 106.1(7)\\ 110.7(8)\\ 108.7(8)\\ 113.4(9)\\ 110.8(9)\\ 113.3(8)\\ 112.0(9)\\ 111.2(8)\\ 112.7(8)\\ 109.5(7)\\ 111.2(8)\\ 104.6(7)\\ 112.3(7)\\ 105.8(7)\\ 112.5(9)\\ 107.4(8)\\ 120.5(7)\\ 112.5(9)\\ 107.4(8)\\ 120.5(7)\\ 112.5(9)\\ 107.4(8)\\ 120.5(7)\\ 112.5(9)\\ 107.4(8)\\ 120.5(7)\\ 112.5(9)\\ 107.4(8)\\ 120.5(7)\\ 112.6(10)\\ 108.2(9)\\ 114.9(10)\\ 106.1(9)\\ \end{array}$

$\begin{array}{llllllllllllllllllllllllllllllllllll$		TABLE 4	(Cont.)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(15)-C(16)-C(17)	113.9(8)	C(37) - C(38) - C(39)	113.7(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(15) - C(16) - C(42)	110.4(10)	C(37) - C(38) - O(59)	110.5(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(15) - C(16) - O(52)	104.4(8)	C(39) - C(38) - O(59)	103.8(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(17) - C(16) - C(42)	111.4(9)	C(29) - C(47) - O(57)	113.9(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(17) - C(16) - O(52)	105.9(8)	C(9) - O(51) - C(13)	115.3(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(42) - C(16) - O(52)	110.2(8)	C(13) - O(52) - C(16)	111.3(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16) - C(17) - C(18)	117.4(8)	C(17) - O(53) - C(21)	117.2(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16) - C(17) - O(53)	105.2(7)	C(21) - O(54) - C(24)	111.3(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18) - C(17) - O(53)	109.9(9)	C(25) - O(55) - C(29)	116.7(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17) - C(18) - C(19)	114.4(9)	C(11) - O(58) - C(34)	115.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18) - C(19) - C(20)	109.8(9)	C(34) - O(59) - C(38)	113.6(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19) - C(20) - C(21)	110.5(10)	C(37) - O(60) - C(40)	112.6(10)
$\begin{array}{c} (e) \mbox{ Bond distances associated with hydrogen-atom positions} \\ C(2)-H(2) 1.02 C(32)-H(32c) 0.72 \\ C(3)-H(3a) 0.86 C(33)-H(33a) 0.86 \\ C(3)-H(3b) 1.14 C(33)-H(33b) 1.07 \\ C(4)-H(4) 0.70 C(33)-H(33c) 0.87 \\ C(7)-H(7) 0.83 C(34)-H(34) 1.02 \\ C(8)-H(8) 0.72 C(35)-H(35a) 1.02 \\ C(9)-H(9) 0.85 C(35)-H(35b) 0.69 \\ C(10)-H(10b) 0.84 C(36)-H(36a) 0.97 \\ C(10)-H(10b) 0.84 C(36)-H(36b) 0.74 \\ C(11)-H(11) 0.92 C(37)-H(37) 0.92 \\ C(12)-H(2) 0.61 C(38)-H(38b) 0.91 \\ C(14)-H(14a) 1.01 C(39)-H(39c) 0.80 \\ C(14)-H(14b) 0.67 C(39)-H(39c) 1.01 \\ C(15)-H(15a) 0.62 C(39)-H(39c) 1.01 \\ C(15)-H(15a) 0.87 C(40)-H(40a) 0.85 \\ C(17)-H(17) 0.81 C(40)-H(40b) 0.80 \\ C(18)-H(18a) 0.84 C(41)-H(41a) 0.87 \\ C(19)-H(19b) 0.87 C(42)-H(40b) 0.80 \\ C(18)-H(18a) 0.84 C(41)-H(41c) 0.73 \\ C(20)-H(20) 0.87 C(42)-H(42a) 0.85 \\ C(22)-H(22) 0.83 C(42)-H(42a) 0.85 \\ C(22)-H(22) 0.87 C(42)-H(42b) 0.92 \\ C(23)-H(23b) 0.75 C(43)-H(43b) 0.83 \\ C(24)-H(24) 0.87 C(43)-H(43c) 0.83 \\ C(24)-H(24) 0.87 C(43)-H(43c) 0.83 \\ C(24)-H(24) 0.87 C(42)-H(42c) 0.73 \\ C(20)-H(20) 0.87 C(42)-H(42c) 0.73 \\ C(20)-H(20) 0.87 C(42)-H(42c) 0.73 \\ C(20)-H(20) 0.87 C(43)-H(43c) 0.83 \\ C(24)-H(24) 0.87 C(43)-H(43c) 0.83 \\ C(24)-H(24) 0.87 C(43)-H(43c) 0.83 \\ C(24)-H(24) 0.87 C(43)-H(43c) 0.83 \\ C(24)-H(25) 0.81 C(43)-H(43c) 0.83 \\ C(25)-H(25) 0.81 C(43)-H(43c) 0.83 \\ C(26)-H(26) 0.99 C(44)-H(44c) 0.74 \\ C(28)-H(28) 0.87 C(44)-H(44c) 0.74 \\ C(28)-H(28) 0.87 C(45)-H(45c) 0.86 \\ C(30)-H(30c) 0.65 C(46)-H(46c) 0.72 \\ C(3)-H(30c) 0.65 C(46)-H(46c) 0.72 \\ C(3)-H(31c) 0.82 C(47)-H(47c) 0.91 \\ C(32)-H(32a) 1.03 C(47)-H(47b) 0.91 \\ $	C(19) - C(20) - C(43)	112.8(11)	O(48) - H(56) - O(56)	162.7(9)
(c) Bond distances associated with hydrogen-atom positions C(2)-H(2) 1.02 C(32)-H(32c) 0.72 $C(3)-H(3b) 1.14 C(33)-H(33b) 1.07$ $C(4)-H(4) 0.70 C(33)-H(33c) 0.87$ $C(7)-H(7) 0.83 C(34)-H(34) 1.02$ $C(8)-H(8) 0.72 C(35)-H(35b) 1.02$ $C(9)-H(9) 0.85 C(35)-H(35b) 0.69$ $C(10)-H(10b) 0.84 C(36)-H(36a) 0.97$ $C(10)-H(10b) 0.84 C(36)-H(36b) 0.74$ $C(11)-H(11) 0.92 C(37)-H(37) 0.92$ $C(12)-H(12) 0.61 C(38)-H(38b) 0.91$ $C(14)-H(14a) 1.01 C(39)-H(39a) 0.80$ $C(14)-H(14b) 0.67 C(39)-H(39b) 0.99$ $C(15)-H(15a) 0.62 C(39)-H(39b) 0.99$ $C(15)-H(15a) 0.62 C(39)-H(39b) 0.99$ $C(15)-H(15a) 0.62 C(39)-H(39b) 0.99$ $C(15)-H(15a) 0.87 C(40)-H(40a) 0.85$ $C(17)-H(17) 0.81 C(40)-H(40b) 0.80$ $C(18)-H(18a) 0.84 C(41)-H(41b) 1.03$ $C(19)-H(19b) 0.88 C(41)-H(41b) 1.03$ $C(29)-H(20) 0.87 C(42)-H(42c) 0.73$ $C(20)-H(20) 0.87 C(42)-H(42c) 0.73$ $C(20)-H(23) 0.93 C(42)-H(42c) 0.73$ $C(23)-H(23b) 0.75 C(43)-H(43a) 0.83$ $C(24)-H(24) 0.87 C(43)-H(43a) 0.83$ $C(24)-H(25) 0.81 C(43)-H(43a) 0.83$ $C(24)-H(25) 0.81 C(43)-H(43a) 0.83$ $C(24)-H(25) 0.81 C(43)-H(43a) 0.83$ $C(24)-H(25) 0.81 C(43)-H(43a) 0.83$ $C(26)-H(26) 0.99 C(44)-H(44b) 1.00$ $C(27)-H(27b) 0.84 C(44)-H(44b) 1.00$ $C(27)-H(27b) 0.84 C(44)-H(44b) 1.00$ $C(27)-H(27b) 0.84 C(44)-H(44b) 1.00$ $C(27)-H(27b) 0.84 C(44)-H(44b) 0.74$ $C(28)-H(26) 0.99 C(44)-H(44b) 0.74$ $C(28)-H(25) 0.81 C(43)-H(45b) 0.85$ $C(30)-H(30b) 0.70 C(45)-H(45b) 0.85$ $C(30)-H$. , . , . ,	. ,	O(49)-H(57)-O(57)	157.7(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(c) Bond distance	s associated w	vith hydrogen-atom p	oositions
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2) - H(2)	1.02	C(32) - H(32c)	0.72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3) - H(3a)	0.86	C(33)–H(33a)	0.86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3) - H(3b)	1.14	C(33) - H(33b)	1.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4) - H(4)	0.70	C(33) - H(33c)	0.87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7) - H(7)	0.83	C(34)-H(34)	1.02
$\begin{array}{cccc} \dot{(9)} - H(9) & 0.85 & C(35) - H(35b) & 0.69 \\ C(10) - H(10b) & 0.84 & C(36) - H(36a) & 0.97 \\ C(10) - H(10b) & 0.84 & C(36) - H(36b) & 0.74 \\ C(11) - H(11) & 0.92 & C(37) - H(37) & 0.92 \\ C(12) - H(12) & 0.61 & C(38) - H(38b) & 0.91 \\ C(14) - H(14b) & 0.67 & C(39) - H(39a) & 0.80 \\ C(14) - H(15b) & 0.62 & C(39) - H(39c) & 1.01 \\ C(15) - H(15a) & 0.62 & C(39) - H(39c) & 1.01 \\ C(15) - H(15b) & 0.87 & C(40) - H(40a) & 0.85 \\ C(17) - H(17) & 0.81 & C(40) - H(40c) & 0.76 \\ C(18) - H(18a) & 0.84 & C(41) - H(41a) & 0.84 \\ C(19) - H(19a) & 0.87 & C(41) - H(41a) & 0.84 \\ C(19) - H(19b) & 0.88 & C(41) - H(41a) & 0.84 \\ C(19) - H(19b) & 0.88 & C(41) - H(42c) & 0.73 \\ C(20) - H(20) & 0.87 & C(42) - H(42a) & 0.85 \\ C(22) - H(22) & 0.83 & C(42) - H(42a) & 0.85 \\ C(23) - H(23b) & 0.75 & C(43) - H(43a) & 0.83 \\ C(24) - H(24) & 0.87 & C(43) - H(43b) & 0.86 \\ C(25) - H(25) & 0.81 & C(43) - H(43c) & 0.83 \\ C(26) - H(26) & 0.99 & C(44) - H(44c) & 0.74 \\ C(27) - H(27a) & 0.87 & C(44) - H(44c) & 0.74 \\ C(28) - H(28) & 0.87 & C(44) - H(44b) & 1.00 \\ C(27) - H(27b) & 0.84 & C(44) - H(44c) & 0.74 \\ C(28) - H(28) & 0.87 & C(44) - H(44b) & 1.00 \\ C(27) - H(27b) & 0.84 & C(44) - H(44c) & 0.74 \\ C(28) - H(28) & 0.87 & C(45) - H(45c) & 0.80 \\ C(30) - H(30a) & 1.00 & C(45) - H(45c) & 0.80 \\ C(30) - H(30c) & 0.65 & C(46) - H(46c) & 0.72 \\ C(31) - H(31a) & 0.93 & C(46) - H(46b) & 0.88 \\ C(31) - H(31b) & 0.81 & C(46) - H(46b) & 0.88 \\ C(31) - H(31c) & 0.82 & C(47) - H(47a) & 1.10 \\ C(32) - H(32a) & 1.03 & C(47) - H(47b) & 0.91 \\ C(32) - H(32a) & 1.03 & C(47) - H(47b) & 0.91 \\ C(32) - H(32a) & 1.03 & C(47) - H(47b) & 0.91 \\ C(32) - H(32a) & 1.03 & C(47) - H(47b) & 0.91 \\ C(32) - H(32a) & 1.03 & C(47) - H(47b) & 0.91 \\ C(32) - H(32b) & 0.96 & O(56) - H(56) & 0.59 \\ O(57) - H(57) & 0.67 \\ \end{array}$	C(8) - H(8)	0.72	C(35) - H(35a)	1.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9) - H(9)	0.85	C(35)-H(35b)	0.69
$\begin{array}{cccccc} C(10)-H(10b) & 0.84 & C(36)-H(36b) & 0.74 \\ C(11)-H(11) & 0.92 & C(37)-H(37) & 0.92 \\ C(12)-H(12) & 0.61 & C(38)-H(38) & 0.91 \\ C(14)-H(14a) & 1.01 & C(39)-H(39a) & 0.80 \\ C(14)-H(14b) & 0.67 & C(39)-H(39b) & 0.99 \\ C(15)-H(15a) & 0.62 & C(39)-H(39b) & 0.89 \\ C(15)-H(15b) & 0.87 & C(40)-H(40a) & 0.85 \\ C(17)-H(17) & 0.81 & C(40)-H(40b) & 0.80 \\ C(18)-H(18b) & 0.84 & C(41)-H(41a) & 0.84 \\ C(19)-H(18b) & 0.87 & C(41)-H(41b) & 1.03 \\ C(19)-H(19b) & 0.88 & C(41)-H(41c) & 0.73 \\ C(20)-H(20) & 0.87 & C(42)-H(42a) & 0.85 \\ C(22)-H(22) & 0.83 & C(42)-H(42b) & 0.92 \\ C(23)-H(23a) & 0.93 & C(42)-H(42b) & 0.92 \\ C(23)-H(23b) & 0.75 & C(43)-H(43a) & 0.86 \\ C(25)-H(25) & 0.81 & C(43)-H(43b) & 0.86 \\ C(25)-H(25) & 0.81 & C(43)-H(43c) & 0.86 \\ C(25)-H(25) & 0.81 & C(44)-H(44b) & 1.00 \\ C(27)-H(27a) & 0.87 & C(44)-H(44b) & 1.00 \\ C(27)-H(27a) & 0.87 & C(44)-H(44b) & 1.00 \\ C(27)-H(27b) & 0.84 & C(44)-H(44b) & 0.86 \\ C(30)-H(30b) & 0.70 & C(45)-H(45b) & 0.85 \\ C(30)-H(30b) & 0.70 & C(45)-H(45b) & 0.85 \\ C(30)-H(30b) & 0.70 & C(45)-H(45b) & 0.88 \\ C(31)-H(31b) & 0.81 & C(46)-H(46c) & 1.07 \\ C(31)-H(31c) & 0.82 & C(47)-H(47b) & 0.91 \\ C(32)-H(32a) & 1.03 & C(47)-H(47b) & 0.91 \\ C(32)-H(32a) & 1.03 & C(47)-H(47b) & 0.91 \\ C(32)-H(32a) & 1.03 & C(47)-H(47b) & 0.91 \\ C(32)-H(32b) & 0.96 & O(56)-H(56) & 3.006 (7) \\ Ag^+ \cdots O(53) & 2.483 (5) & Ag^+ \cdots O(58) & 2.672 (6) \\ Ag^+ \cdots O(55) & 2.636 (6) & Ag^+ \cdots O(59) & 2.461 (6) \\ \end{array}$	C(10) - H(10a)	0.91	C(36)–H(36a)	0.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10) - H(10b)	0.84	C(36)-H(36b)	0.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11) - H(11)	0.92	C(37) - H(37)	0.92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12) - H(12)	0.61	C(38)-H(38)	0.91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14) - H(14a)	1.01	C(39) - H(39a)	0.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14) - H(14b)	0.67	C(39)–H(39b)	0.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15) - H(15a)	0.62	C(39) - H(39c)	1.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15) - H(15b)	0.87	C(40) - H(40a)	0.85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17) - H(17)	0.81	C(40) - H(40b)	0.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18) - H(18a)	0.84	C(40) - H(40c)	0.76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18) - H(18b)	0.84	C(41) - H(41a)	0.84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19) - H(19a)	0.87	C(41)-H(41b)	1.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19) - H(19b)	0.88	C(41) - H(41c)	0.73
$\begin{array}{ccccccc} C(22)-H(22)& 0.83& C(42)-H(42b)& 0.92\\ C(23)-H(23a)& 0.93& C(42)-H(42c)& 0.73\\ C(23)-H(23b)& 0.75& C(43)-H(43a)& 0.83\\ C(24)-H(24)& 0.87& C(43)-H(43b)& 0.86\\ C(25)-H(25)& 0.81& C(43)-H(43c)& 0.83\\ C(26)-H(26)& 0.99& C(44)-H(44a)& 1.01\\ C(27)-H(27a)& 0.87& C(44)-H(44b)& 1.00\\ C(27)-H(27b)& 0.84& C(44)-H(44c)& 0.74\\ C(28)-H(28)& 0.87& C(45)-H(45a)& 0.96\\ C(30)-H(30a)& 1.00& C(45)-H(45b)& 0.85\\ C(30)-H(30b)& 0.70& C(45)-H(45b)& 0.85\\ C(30)-H(30b)& 0.70& C(45)-H(46b)& 0.88\\ C(31)-H(31a)& 0.93& C(46)-H(46b)& 0.88\\ C(31)-H(31a)& 0.93& C(46)-H(46b)& 0.88\\ C(31)-H(31b)& 0.81& C(46)-H(46c)& 1.07\\ C(32)-H(32a)& 1.03& C(47)-H(47a)& 1.10\\ C(32)-H(32b)& 0.96& O(56)-H(56)& 0.59\\ O(57)-H(57)& 0.67\\ \hline (d) Interatomic distances around the silver atom\\ Ag^+&\cdots O(52)& 2.751& (6)& Ag^+&\cdots O(56)& 3.006& (7)\\ Ag^+&\cdots O(53)& 2.483& (5)& Ag^+&\cdots O(58)& 2.672& (6)\\ Ag^+&\cdots O(55)& 2.636& (6)& Ag^+&\cdots O(59)& 2.461& (6)\\ \hline \end{array}$	C(20) - H(20)	0.87	C(42) - H(42a)	0.85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22) - H(22)	0.83	C(42) - H(42b)	0.92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23) - H(23a)	0.93	C(42) - H(42c)	0.73
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23) - H(23b)	0.75	C(43) - H(43a)	0.83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24) - H(24)	0.87	C(43) - H(43b)	0.86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25) - H(25)	0.81	C(43) - H(43c)	0.83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26) - H(26)	0.99	C(44) - H(44a)	1.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(27) - H(27a)	0.87	C(44)-H(44b)	1.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(27) - H(27b)	0.84	C(44) - H(44c)	0.74
$\begin{array}{ccccc} C(30)-H(30a) & 1.00 & C(45)-H(45b) & 0.85 \\ C(30)-H(30b) & 0.70 & C(45)-H(45c) & 0.80 \\ C(30)-H(30c) & 0.65 & C(46)-H(46a) & 0.72 \\ C(31)-H(31a) & 0.93 & C(46)-H(46b) & 0.88 \\ C(31)-H(31b) & 0.81 & C(46)-H(46c) & 1.07 \\ C(31)-H(31c) & 0.82 & C(47)-H(47a) & 1.10 \\ C(32)-H(32a) & 1.03 & C(47)-H(47b) & 0.91 \\ C(32)-H(32b) & 0.96 & O(56)-H(56) & 0.59 \\ O(57)-H(57) & 0.67 \\ \end{array}$ $\begin{array}{c} (d) \text{ Interatomic distances around the silver atom} \\ Ag^+ \cdots O(52) & 2.751 (6) & Ag^+ \cdots O(56) & 3.006 (7) \\ Ag^+ \cdots O(54) & 2.875 (6) & Ag^+ \cdots O(58) & 2.672 (6) \\ Ag^+ \cdots O(55) & 2.636 (6) & Ag^+ \cdots O(59) & 2.461 (6) \\ \end{array}$	C(28) - H(28)	0.87	C(45) - H(45a)	0.96
$\begin{array}{ccccc} C(30)-H(30b) & 0.70 & C(45)-H(45c) & 0.80 \\ C(30)-H(30c) & 0.65 & C(46)-H(46a) & 0.72 \\ C(31)-H(31a) & 0.93 & C(46)-H(46b) & 0.88 \\ C(31)-H(31b) & 0.81 & C(46)-H(46c) & 1.07 \\ C(31)-H(31c) & 0.82 & C(47)-H(47a) & 1.10 \\ C(32)-H(32a) & 1.03 & C(47)-H(47b) & 0.91 \\ C(32)-H(32b) & 0.96 & O(56)-H(56) & 0.59 \\ O(57)-H(57) & 0.67 \\ \end{array}$	C(30) - H(30a)	1.00	C(45)-H(45b)	0.85
$\begin{array}{ccccc} C(30)-H(30c) & 0.65 & C(46)-H(46a) & 0.72 \\ C(31)-H(31a) & 0.93 & C(46)-H(46b) & 0.88 \\ C(31)-H(31b) & 0.81 & C(46)-H(46c) & 1.07 \\ C(31)-H(31c) & 0.82 & C(47)-H(47a) & 1.10 \\ C(32)-H(32a) & 1.03 & C(47)-H(47b) & 0.91 \\ C(32)-H(32b) & 0.96 & O(56)-H(56) & 0.59 \\ O(57)-H(57) & 0.67 \\ \end{array}$	C(30) - H(30b)	0.70	C(45) - H(45c)	0.80
$\begin{array}{ccccc} C(31)-H(31a) & 0.93 & C(46)-H(46b) & 0.88 \\ C(31)-H(31b) & 0.81 & C(46)-H(46c) & 1.07 \\ C(31)-H(31c) & 0.82 & C(47)-H(47a) & 1.10 \\ C(32)-H(32a) & 1.03 & C(47)-H(47b) & 0.91 \\ C(32)-H(32b) & 0.96 & O(56)-H(56) & 0.59 \\ & & O(57)-H(57) & 0.67 \end{array}$ (d) Interatomic distances around the silver atom $\begin{array}{c} Ag^+ \cdots O(52) & 2.751 & (6) & Ag^+ \cdots O(56) & 3.006 & (7) \\ Ag^+ \cdots O(53) & 2.483 & (5) & Ag^+ \cdots O(57) & 2.375 & (7) \\ Ag^+ \cdots O(55) & 2.636 & (6) & Ag^+ \cdots O(59) & 2.461 & (6) \end{array}$	C(30) - H(30c)	0.65	C(46) - H(46a)	0.72
$\begin{array}{cccccc} C(31)-H(31b) & 0.81 & C(46)-H(46c) & 1.07 \\ C(31)-H(31c) & 0.82 & C(47)-H(47a) & 1.10 \\ C(32)-H(32a) & 1.03 & C(47)-H(47b) & 0.91 \\ C(32)-H(32b) & 0.96 & O(56)-H(56) & 0.59 \\ O(57)-H(57) & 0.67 \end{array}$ $(d) \text{ Interatomic distances around the silver atom} \\ Ag^+ \cdots O(52) & 2.751 & (6) & Ag^+ \cdots O(56) & 3.006 & (7) \\ Ag^+ \cdots O(53) & 2.483 & (5) & Ag^+ \cdots O(56) & 2.375 & (7) \\ Ag^+ \cdots O(54) & 2.875 & (6) & Ag^+ \cdots O(58) & 2.672 & (6) \\ Ag^+ \cdots O(55) & 2.636 & (6) & Ag^+ \cdots O(59) & 2.461 & (6) \end{array}$	C(31) - H(31a)	0.93	C(46) - H(46b)	0.88
$\begin{array}{ccccc} C(31)-H(31c) & 0.82 & C(47)-H(47a) & 1.10 \\ C(32)-H(32a) & 1.03 & C(47)-H(47b) & 0.91 \\ C(32)-H(32b) & 0.96 & O(56)-H(56) & 0.59 \\ O(57)-H(57) & 0.67 \end{array}$ (d) Interatomic distances around the silver atom $Ag^+ \cdots O(52) & 2.751 \ (6) & Ag^+ \cdots O(56) & 3.006 \ (7) \\ Ag^+ \cdots O(53) & 2.483 \ (5) & Ag^+ \cdots O(57) & 2.375 \ (7) \\ Ag^+ \cdots O(54) & 2.875 \ (6) & Ag^+ \cdots O(58) & 2.672 \ (6) \\ Ag^+ \cdots O(55) & 2.636 \ (6) & Ag^+ \cdots O(59) & 2.461 \ (6) \end{array}$	C(31) - H(31b)	0.81	C(46) - H(46c)	1.07
$\begin{array}{ccccc} C(32)-H(32a) & 1.03 & C(47)-H(47b) & 0.91 \\ C(32)-H(32b) & 0.96 & O(56)-H(56) & 0.59 \\ O(57)-H(57) & 0.67 \end{array}$ (d) Interatomic distances around the silver atom $Ag^+ \cdots O(52) & 2.751 \ (6) & Ag^+ \cdots O(56) & 3.006 \ (7) \\ Ag^+ \cdots O(53) & 2.483 \ (5) & Ag^+ \cdots O(57) & 2.375 \ (7) \\ Ag^+ \cdots O(54) & 2.875 \ (6) & Ag^+ \cdots O(58) & 2.672 \ (6) \\ Ag^+ \cdots O(55) & 2.636 \ (6) & Ag^+ \cdots O(59) & 2.461 \ (6) \end{array}$	C(31) - H(31c)	0.82	C(47) - H(47a)	1.10
$\begin{array}{cccc} C(32)-H(32b) & 0.96 & O(56)-H(56) & 0.59 \\ O(57)-H(57) & 0.67 \\ \hline (d) \text{ Interatomic distances around the silver atom} \\ Ag^+ \cdots O(52) & 2.751 & (6) & Ag^+ \cdots O(56) & 3.006 & (7) \\ Ag^+ \cdots O(53) & 2.483 & (5) & Ag^+ \cdots O(57) & 2.375 & (7) \\ Ag^+ \cdots O(54) & 2.875 & (6) & Ag^+ \cdots O(58) & 2.672 & (6) \\ Ag^+ \cdots O(55) & 2.636 & (6) & Ag^+ \cdots O(59) & 2.461 & (6) \\ \hline \end{array}$	C(32) - H(32a)	1.03	C(47) - H(47b)	0.91
$\begin{array}{c cccc} O(57)-H(57) & 0.67 \\ \hline (d) \ Interatomic \ distances \ around \ the \ silver \ atom \\ Ag^+ \cdots O(52) & 2.751 \ (6) & Ag^+ \cdots O(56) & 3.006 \ (7) \\ Ag^+ \cdots O(53) & 2.483 \ (5) & Ag^+ \cdots O(57) & 2.375 \ (7) \\ Ag^+ \cdots O(54) & 2.875 \ (6) & Ag^+ \cdots O(58) & 2.672 \ (6) \\ Ag^+ \cdots O(55) & 2.636 \ (6) & Ag^+ \cdots O(59) & 2.461 \ (6) \\ \end{array}$	C(32) - H(32b)	0.96	O(56) - H(56)	0.59
			O(57)-H(57)	0.67
$Ag^+ \cdots O(52)$ 2.751 (6) $Ag^+ \cdots O(56)$ 3.006 (7) $Ag^+ \cdots O(53)$ 2.483 (5) $Ag^+ \cdots O(57)$ 2.375 (7) $Ag^+ \cdots O(54)$ 2.875 (6) $Ag^+ \cdots O(58)$ 2.672 (6) $Ag^+ \cdots O(55)$ 2.636 (6) $Ag^+ \cdots O(59)$ 2.461 (6)	(d) Interatomic di	stances aroun	d the silver atom	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Ag^+ \cdots O(52)$	2 751 (6)	$Ag + \cdots O(56)$	8.006 (7)
$Ag^+ \cdots O(54)$ 2.875 (6) $Ag^+ \cdots O(58)$ 2.672 (6) $Ag^+ \cdots O(55)$ 2.636 (6) $Ag^+ \cdots O(59)$ 2.461 (6)	$\Delta \sigma^+ \cdots \Omega(52)$	2 483 (5)	Ag+ • • • 0(57)	2 375 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Ag + \cdots O(54)$	2.875 (6)	$A_{g}^{+} \cdots O(58)$	2 672 (6)
	$Ag^+ \cdots O(55)$	2.636 (6)	$Ag^+ \bullet \cdot \cdot O(59)$	2.461 (6)
		2.000 (0)		

a slight underestimation of errors. The C(1)-O(48) and C(1)-O(49) bond distances (1.212 and 1.221 Å) in the carboxylate group are shorter than expected for single bonds and hence may be inferred to show partial doublebond character. The C-H bond distances range from 0.62 to 1.14 Å, being shorter than the internuclear separations (1.08 Å) obtained spectroscopically.35

The bond angles in the side chain are as expected. The mean interbond angle in the six-membered rings is 110.6° , except for the angles at O(51), O(53), O(55), and O(59), which are slightly, but not significantly, greater than the normal tetrahedral angle of 109.4°. The mean 35 L. E. Sutton, Chem. Soc. Special Publ., No. 18, 1965.

1977

interbond angle in the five-membered rings is 103.7°, except for the angles at atoms O(52) and O(54). The mean C-O-C bond angles in the six- and five-membered rings are 115.7 and 111.3°. The arrangement of atoms

TABLE 5

- Equations of planes, and in square brackets, displacements (Å) of the atoms from means planes; X, Y, Z are orthogonal co-ordinates (Å)
 - Plane (I): C(26), C(27), C(29), O(55)
 - $0.248\ 7X + 0.966\ 8Y 0.056\ 9Z = 11.800\ 0$ [C(25) - 0.63, C(26) 0.00, C(27), 0.00, C(28) 0.60, C(29) 0.00,O(55) 0.00]
 - Plane (II): C(18), C(19), C(21), O(53)

 $0.607\ 5X + 0.794\ 1Y - 0.015\ 2Z = 15.220\ 7$

- [C(17) 0.58, C(18) 0.00, C(19) 0.00, C(20) 0.65, C(31) 0.00]O(53) 0.00]
- Plane (III): C(9), C(10), C(12), C(13) $0.261 \ 3X - 0.266 \ 5Y + 0.927 \ 7Z = 5.609 \ 6$ [C(9) 0.00, C(10) 0.00, C(11) 0.62, C(12) 0.00, C(13) 0.00, O(51) - 0.60]
- Plane (IV): C(34), C(35), C(37), C(38) $0.104\ 1X\ +\ 0.902\ 9\ Y\ +\ 0.416\ 9\ Z\ =\ 10.154\ 4$ [C(34) 0.00, C(35) 0.00, C(36) - 0.64, C(37) 0.00, C(38) 0.00,O(59) 0.64]
- Plane (V): C(21), C(23), C(24), O(54) $-0.831\ 0X + 0.496\ 7Y - 0.250\ 2Z = -10.309\ 9$
- [C(21) 0.02, C(22) 0.55, C(23) 0.02, C(24) 0.04, O(54)]0.04]
- Plane (VI): C(13), C(15), C(16), O(52) -0.587 8X + 0.776 3Y + 0.227 2Z = 1.9424[C(13) 0.03, C(14) - 0.55, C(15) - 0.03, C(16) 0.05, O(52)]-0.05]
- Plane (VII): C(5)-(8)

 $0.267 \ 8X + 0.900 \ 0Y + 0.343 \ 8Z = 14.493 \ 4$

[C(5) 0.00, C(6) 0.00, C(7) 0.00, C(8) 0.00, C(9) - 0.79, C(32)]-0.07, C(33) 1.39, O(50) -0.19]

Plane (VIII): C(4)-(6), O(50)

- $0.143\ 6X + 0.962\ 8Y + 0.228\ 7Z = 13.743\ 6$ [C(4) 0.00, C(5) 0.00, C(6) 0.00, C(7) - 0.20, C(32) 0.16, O(50)0.001
- Plane (1X): C(1), C(2), O(48), O(49)
- -0.084 9X + 0.984 0Y + 0.156 1Z = 10.414 9
- [C(1) 0.01, C(2) 0.00, C(3) 0.37, C(30) -1.27, O(48) 0.00,O(49) 0.00]

around C(13) and C(21) is tetrahedral, so that the junctions B/C and D/E are of spiro-conformation. The mean of the angles around the spiro-carbon atoms [C(13)]and C(21)] are ca. 109.3 and 109.2°. However angles C(12)-C(13)-C(14) and C(20)-C(21)-C(22) are significantly larger (mean 117°), than the inter-ring angles. A similar effect is noted in the other compound,36-41 containing five- and six-membered rings joined at a spiro-carbon atom, and can be attributed to ring strain. Maximum distortion of the bond angles occurs at C(21).

The displacements of atoms from some least-squares mean planes and the various torsion angles are listed in

- ³⁶ C. E. McEachan, A. T. McPhail, and G. A. Sim, J. Chem.

Soc. (C), 1966, 579. ³⁷ G. W. Smith, Acta Cryst., 1970, **B26**, 1946. ³⁸ C. Knobler, C. Romers, P. B. Braun, and J. Hornstra, Acta Cryst., 1972, B28, 2097.

Tables 5 and 6. The six-membered rings are in the normal chair form and the five-membered rings have the envelope conformation. The carboxylate group [C(1),C(2), O(48), and O(49)], carbonyl-containing group [C(4)-(6) and O(50)], and ethylene group [C(5)-(8)] are quite planar. The molecule is wrapped around the silver ion and co-ordinated to it by eight oxygen atoms. Moreover, the conformation of the molecule seems to be

TABLE 6

Torsion angles (°)	
O(48) - C(1) - C(2) - C(3)	166.0
O(48)-C(1)-C(2)-C(30)	- 69.0
O(49) - C(1) - C(2) - C(3) O(40) - C(1) - C(2) - C(30)	- 17.4
C(49) - C(1) - C(2) - C(30) C(1) - C(2) - C(3) - C(4)	- 67.8
C(30)-C(2)-C(3)-C(4)	169.1
C(2)-C(3)-C(4)-C(31)	- 71.8
C(2)-C(3)-C(4)-C(5)	166.1
C(3) - C(4) - C(5) - C(6) C(3) - C(4) - C(5) - O(50)	- 90.0
C(31) - C(4) - C(5) - C(6)	144.1
C(31) - C(4) - C(5) - O(50)	-35.2
C(4) - C(5) - C(6) - C(7)	10.6
C(4) = C(5) = C(6) = C(32) C(50) = C(5) = C(6) = C(7)	-172.6
O(50) - C(5) - C(6) - C(32)	6.8
C(5)-C(6)-C(7)-C(8)	179.3
C(32)-C(6)-C(7)-C(8)	2.8
C(6)-C(7)-C(8)-C(9) C(6)-C(7)-C(8)-C(23)	- 145.5
C(7) - C(8) - C(9) - O(51)	179.3
C(7) - C(8) - C(9) - C(10)	58.2
C(33) - C(8) - C(9) - O(51)	- 56.4
C(33)-C(8)-C(9)-C(10)	- 177.5
C(11) - C(12) - C(13) - C(14) C(11) - C(12) - C(13) - O(52)	
C(41) - C(12) - C(13) - C(14)	58.4
C(41) - C(12) - C(13) - O(52)	-58.2
C(9) - O(51) - C(13) - C(14)	- 175.6
C(9) = O(51) = C(13) = O(52) C(15) = C(16) = C(17) = C(18)	00.1
C(15) - C(16) - C(17) - O(53)	-172.4
O(52) - C(16) - C(17) - C(18)	64.5
O(52)-C(16)-C(17)-O(53)	-58.1
C(42) = C(16) = C(17) = C(18) C(42) = C(16) = C(17) = O(52)	- 175.4
C(12) - C(20) - C(21) - C(22)	- 70.9
C(19)-C(20)-C(21)-O(54)	168.4
C(43)-C(20)-C(21)-C(22)	163.4
C(43)-C(20)-C(21)-O(54)	42.8
C(17) = O(53) = C(21) = O(52) C(17) = O(53) = C(21) = O(54)	70.2
C(23)-C(24)-C(25)-C(26)	69.0
C(23) - C(24) - C(25) - O(55)	53.2
O(54)-C(24)-C(25)-C(26)	168.6
O(54)-O(24)-O(25)-O(55) O(28)-O(29)-O(57)	
O(55)-C(29)-C(47)-O(57)	66.3
O(56) - C(29) - C(47) - O(57)	- 48.0
C(10)-C(11)-O(58)-C(34)	116.1
C(12) = C(11) = O(58) = C(34) C(11) = O(58) = C(34) = C(25)	- 123.9
C(11) - O(58) - C(34) - O(59)	174
C(36) - C(37) - O(60) - C(40)	- 72.8
C(38) - C(37) - O(60) - C(40)	167.6

maintained by two very strong hydrogen bonds 42 (2.604 and 2.673 Å) between the carboxylate oxygen

- ³⁹ O. Dideberg and L. Dupont, Acta Cryst., 1972, B28, 3014.
 ⁴⁰ M. H. J. Koch, Acta Cryst., 1973, B29, 379.
 ⁴¹ J. M. Franco, S. Martinez-Carrera, and S. Garcia-Blanco, Acta Cryst., 1974, B30, 415.
 - 42 1. D. Brown, Acta Cryst., 1976, A82, 24.

FIGURE 2 Packing of the structure viewed down the b axis

atoms and the two alcohol groups of the terminal sixmembered ring A. The two oxygen atoms attached to C(34) are both co-ordinated to the silver ion, but the carboxylate oxygens are not among these. The coordination of silver does include one oxygen atom O(57) of the alcohol group of ring A. The silver ion is within 3.006 Å of eight oxygen atoms (see Table 4). The Ag · · · O contacts agree with distances reported for the silver salts of other polyether antibiotics: monensin,^{2,5} polyetherin A (nigericin),⁶ grisorixin,⁸ X-537A,¹⁰ X-206,¹¹ lysocellin,^{18,24} RO 21-6150,²¹ and emericid.²²

The molecular packing arrangement along the b axis is illustrated in Figure 2. All intermolecular distances were calculated, and the most significant contacts (<3.600 Å) are given in Table 7. The shortest contact

⁴³ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960, p. 260. is $C(22) \cdots O(50^{III})$ 3.372 Å, and other intermolecular contacts are greater than the sum of the van der Waals

TABLE 7

Intermolecular distances (<3.600 Å)</th>C(22) $\cdots O(50^{I})$ 3.372C(32) $\cdots O(56^{II})$ 3.449C(23) $\cdots O(50^{I})$ 3.465C(44) $\cdots O(50^{I})$ 3.443The Roman numerals as superscripts refer to the equivalent position relative to the reference molecule at x, y, z:I $\frac{1}{2} + x$, $\frac{5}{2} - y$, 1 - zII $\frac{1}{2} - x$, 2 - y, $-\frac{1}{2} + z$

radii. The normal van der Waals separation between a

methyl carbon and an oxygen atom is **3**.40 Å.⁴³

We thank Dr. T. Kubota (the late) for suggesting this investigation and for the preparation of suitable crystals, and H. Nakai for technical assistance.

[6/1885 Received, 8th October, 1976]